Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Morin, Pat; Oh, Eunjin (Ed.)Motivated by the problem of estimating bottleneck capacities on the Internet, we formulate and study the problem of vantage point selection. We are given a graph G = (V, E) whose edges E have unknown capacity values that are to be discovered. Probes from a vantage point, i.e, a vertex v ∈ V, along shortest paths from v to all other vertices, reveal bottleneck edge capacities along each path. Our goal is to select k vantage points from V that reveal the maximum number of bottleneck edge capacities. We consider both a non-adaptive setting where all k vantage points are selected before any bottleneck capacity is revealed, and an adaptive setting where each vantage point selection instantly reveals bottleneck capacities along all shortest paths starting from that point. In the non-adaptive setting, by considering a relaxed model where edge capacities are drawn from a random permutation (which still leaves the problem of maximizing the expected number of revealed edges NP-hard), we are able to give a 1-1/e approximate algorithm. In the adaptive setting we work with the least permissive model where edge capacities are arbitrarily fixed but unknown. We compare with the best solution for the particular input instance (i.e. by enumerating all choices of k tuples), and provide both lower bounds on instance optimal approximation algorithms and upper bounds for trees and planar graphs.more » « lessFree, publicly-accessible full text available August 11, 2026
-
Bodlaender, Hans L (Ed.)Given a geometric domain P, visibility-based search problems seek routes for one or more mobile agents ("watchmen") to move within P in order to be able to see a portion (or all) of P, while optimizing objectives, such as the length(s) of the route(s), the size (e.g., area or volume) of the portion seen, the probability of detecting a target distributed within P according to a prior distribution, etc. The classic watchman route problem seeks a shortest route for an observer, with omnidirectional vision, to see all of P. In this paper we study bicriteria optimization problems for a single mobile agent within a polygonal domain P in the plane, with the criteria of route length and area seen. Specifically, we address the problem of computing a minimum length route that sees at least a specified area of P (minimum length, for a given area quota). We also study the problem of computing a length-constrained route that sees as much area as possible. We provide hardness results and approximation algorithms. In particular, for a simple polygon P we provide the first fully polynomial-time approximation scheme for the problem of computing a shortest route seeing an area quota, as well as a (slightly more efficient) polynomial dual approximation. We also consider polygonal domains P (with holes) and the special case of a planar domain consisting of a union of lines. Our results yield the first approximation algorithms for computing a time-optimal search route in P to guarantee some specified probability of detection of a static target within P, randomly distributed in P according to a given prior distribution.more » « less
-
Abstract Hard-to-predict bursts of COVID-19 pandemic revealed significance of statistical modeling which would resolve spatio-temporal correlations over geographical areas, for example spread of the infection over a city with census tract granularity. In this manuscript, we provide algorithmic answers to the following two inter-related public health challenges of immense social impact which have not been adequately addressed (1) Inference Challenge assuming that there are N census blocks (nodes) in the city, and given an initial infection at any set of nodes, e.g. any N of possible single node infections, any $$N(N-1)/2$$ N ( N - 1 ) / 2 of possible two node infections, etc, what is the probability for a subset of census blocks to become infected by the time the spread of the infection burst is stabilized? (2) Prevention Challenge What is the minimal control action one can take to minimize the infected part of the stabilized state footprint? To answer the challenges, we build a Graphical Model of pandemic of the attractive Ising (pair-wise, binary) type, where each node represents a census tract and each edge factor represents the strength of the pairwise interaction between a pair of nodes, e.g. representing the inter-node travel, road closure and related, and each local bias/field represents the community level of immunization, acceptance of the social distance and mask wearing practice, etc. Resolving the Inference Challenge requires finding the Maximum-A-Posteriory (MAP), i.e. most probable, state of the Ising Model constrained to the set of initially infected nodes. (An infected node is in the $$+ \, 1$$ + 1 state and a node which remained safe is in the $$- \, 1$$ - 1 state.) We show that almost all attractive Ising Models on dense graphs result in either of the two possibilities (modes) for the MAP state: either all nodes which were not infected initially became infected, or all the initially uninfected nodes remain uninfected (susceptible). This bi-modal solution of the Inference Challenge allows us to re-state the Prevention Challenge as the following tractable convex programming : for the bare Ising Model with pair-wise and bias factors representing the system without prevention measures, such that the MAP state is fully infected for at least one of the initial infection patterns, find the closest, for example in $$l_1$$ l 1 , $$l_2$$ l 2 or any other convexity-preserving norm, therefore prevention-optimal, set of factors resulting in all the MAP states of the Ising model, with the optimal prevention measures applied, to become safe. We have illustrated efficiency of the scheme on a quasi-realistic model of Seattle. Our experiments have also revealed useful features, such as sparsity of the prevention solution in the case of the $$l_1$$ l 1 norm, and also somehow unexpected features, such as localization of the sparse prevention solution at pair-wise links which are NOT these which are most utilized/traveled.more » « less
-
Abstract The increasing utility of specialized circuits and growing applications of optimization call for the development of efficient hardware accelerator for solving optimization problems. Hopfield neural network is a promising approach for solving combinatorial optimization problems due to the recent demonstrations of efficient mixed-signal implementation based on emerging non-volatile memory devices. Such mixed-signal accelerators also enable very efficient implementation of various annealing techniques, which are essential for finding optimal solutions. Here we propose a “weight annealing” approach, whose main idea is to ease convergence to the global minima by keeping the network close to its ground state. This is achieved by initially setting all synaptic weights to zero, thus ensuring a quick transition of the Hopfield network to its trivial global minima state and then gradually introducing weights during the annealing process. The extensive numerical simulations show that our approach leads to a better, on average, solutions for several representative combinatorial problems compared to prior Hopfield neural network solvers with chaotic or stochastic annealing. As a proof of concept, a 13-node graph partitioning problem and a 7-node maximum-weight independent set problem are solved experimentally using mixed-signal circuits based on, correspondingly, a 20 × 20 analog-grade TiO 2 memristive crossbar and a 12 × 10 eFlash memory array.more » « less
-
Motivated by indoor localization by tripwire lasers, we study the problem of cutting a polygon into small-size pieces, using the chords of the polygon. Several versions are considered, depending on the definition of the "size" of a piece. In particular, we consider the area, the diameter, and the radius of the largest inscribed circle as a measure of the size of a piece. We also consider different objectives, either minimizing the maximum size of a piece for a given number of chords, or minimizing the number of chords that achieve a given size threshold for the pieces. We give hardness results for polygons with holes and approximation algorithms for multiple variants of the problem.more » « less
An official website of the United States government

Full Text Available